Siamese crocodile bile induces apoptosis in NCI-H1299 human non-small cell lung cancer cells via a mitochondria-mediated intrinsic pathway and inhibits tumorigenesis

نویسندگان

  • Ling Tian
  • Yi-Tao Deng
  • Xin Dong
  • Jia-Yi Fan
  • Hua-Liang Li
  • Yu-Mei Ding
  • Wei-Xi Peng
  • Qing-Xi Chen
  • Dong-Yan Shen
چکیده

Non-small-cell lung cancer (NSCLC) is a widespread and particularly aggressive form of cancer. Patients with NSCLC and early metastases typically have poor prognosis, highlighting the critical need for additional drugs to improve disease outcome following surgical resection. The present study aimed to determine if Siamese crocodile bile (SCB) had an anti‑cancer effect on NCI‑H1299 human NSCLC cells. The inhibitory mechanism of SCB was examined in cell culture and nude mice. In vitro experimental results revealed that SCB inhibited the proliferation and colony‑forming ability of NCI‑H1299 cells by arresting cell cycle and inducing apoptosis. The loss of the mitochondrial membrane potential and the release of cytochrome c indicated that SCB treatment may lead to mitochondrial dysfunction in NCI‑H1299 cells. At the molecular level, SCB altered the ratio of protein expression of Bax/Bcl‑2 and activated associated caspases, suggesting that intrinsic pathway involvement in the SCB‑induced apoptosis of NCI‑H1299 cells. In the in vivo experiments, intraperitoneal injection of SCB for 4 weeks inhibited xenograft tumor growth by 46.8% without observable toxicity in nude mice. Immunohistochemistry analysis of proliferating cell nuclear antigen and vascular endothelial growth factor also revealed that SCB inhibited cell proliferation and metastasis in NSCLC xenograft tumors. Overall, SCB exerted an anti-cancer effect on NCI‑H1299 human NSCLC cells in vitro and in vivo and may have therapeutic potential for the treatment of human NSCLC.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) induces apoptosis via the intrinsic pathway in H1299 lung cancer cells

(E)-2-benzylidene-3-(cyclohexylamino)-2,3-dihydro-1H-inden-1-one (BCI) is known as a dual specific phosphatase 1/6 or MAPK inhibitor. However, its precise anti-lung cancer mechanism remains unknown. In this study, the effects of BCI on cell viability were investigated in the non-small cell lung cancer cell lines NCIH1299, A549, and NCI-H460. We confirmed that BCI significantly inhibited the cel...

متن کامل

Effects of Trichostatin A on the Histone Deacetylases (HDACs), Intrinsic Apoptotic Pathway, p21/Waf1/Cip1, and p53 in Human Neuroblastoma, Glioblastoma, Hepatocellular Carcinoma, and Colon Cancer Cell Lines

Background:  The aberrant and altered patterns of gene expression play an important role in the biology of cancer and tumorigenesis. DNA methylation and histone deacetylation are the most studied epigenetic mechanisms. Histone deacetylase inhibitors (HDACIs) such as valproic acid (VPA) and trichostatin A (TSA) are a group of anticancer compounds for the treatment of solid and hematological canc...

متن کامل

Sphingosine 1-phosphate interacts with Survivin pathway to enhance tumorigenesis in cancer cells

Objective(s):Degradation of sphingosine 1-phosphate (S1P), as a bioactive lipid, or deregulation of its production involves in tumor progression, metastasis and chemoresistance. Since the tumor progression effects of S1P and its mechanism in chronic lymphoblastic leukemia and non-small cell lung cancer is not fully understood, we investigated the role and one of the mechanisms of S1P in tumor p...

متن کامل

Betanodavirus B2 protein triggers apoptosis and necroptosis in lung cancer cells that suppresses autophagy

The betanodavirus B2 protein targets the mitochondria and acts as a "death factor", but its effect on lung cancer cells is unknown. We examined the effect of the B2 protein on triggering apoptosis or necroptosis via P53-dependent and P53-independent pathways and increased in suppression of autophagy. The B2 protein targets the mitochondria of A549 (P53+/+) and H1299 (P53-/-) lung cancer cells d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2017